skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rüter, Hannes R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The measurement of orbital eccentricity in gravitational-wave (GW) signals will provide unique insights into the astrophysical origin of binary systems, while ignoring eccentricity in waveform models could introduce significant biases in parameter estimation and tests of general relativity. Upcoming LIGO-Virgo-KAGRA observing runs are expected to detect a subpopulation of eccentric signals, making it vital to develop accurate waveform models for eccentric orbits. Here, employing recent analytical results through the third post-Newtonian order, we develop v5: a new time-domain, effective-one-body, multipolar waveform model for eccentric binary black holes with spins aligned (or antialigned) with the orbital angular momentum. Besides the dominant (2, 2) mode, the model includes the (2, 1), (3, 3), (3, 2), (4, 4), and (4, 3) modes. We validate the model’s accuracy by computing its unfaithfulness against 99 (28 public and 71 private) eccentric numerical-relativity (NR) simulations, produced by the Simulating eXtreme Spacetimes Collaboration. Importantly, for NR waveforms with initial GW eccentricities below 0.5, the maximum (2, 2)-mode unfaithfulness across the total mass range 20 200 M is consistently below or close to 1%, with a median value of 0.02 % , reflecting an accuracy improvement of approximately an order of magnitude compared to the previous-generation v4 and the state-of-the-art esumalí eccentric model. In the quasi-circular-orbit limit, v5 is in excellent agreement with the highly accurate v5 model. The accuracy, robustness, and speed of v5 make it suitable for data analysis and astrophysical studies. We demonstrate this by performing a set of recovery studies of synthetic NR-signal injections, and parameter-estimation analyses of the events GW150914 and GW190521, which we find to have no eccentricity signatures. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. We uncover late-time gravitational-wave tails in fully nonlinear 3 + 1 dimensional numerical relativity simulations of merging black holes, using the highly accurate p code. We achieve this result by exploiting the strong magnification of late-time tails due to binary eccentricity, recently observed in perturbative evolutions, and showcase here the tail presence in head-on configurations for several mass ratios close to unity. We validate the result through a large battery of numerical tests and detailed comparison with a perturbative evolution, which display striking agreement with full nonlinear ones in the ringdown regime, and very similar tail morphologies. Our results offer yet another confirmation of the highly predictive power of black hole perturbation theory in the presence of a source, even when applied to nonlinear solutions. The late-time tail signal is much more prominent than anticipated until recently, and possibly within reach of gravitational-wave detector measurements, unlocking observational investigations of an additional set of general relativistic predictions on the long-range gravitational dynamics. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  3. SpECTRE is an open-source code for multi-scale, multi-physics problems in astrophysics and gravitational physics. In the future, we hope that it can be applied to problems across discipline boundaries in fluid dynamics, geoscience, plasma physics, nuclear physics, and engineering. It runs at petascale and is designed for future exascale computers. SpECTRE is being developed in support of our collaborative Simulating eXtreme Spacetimes (SXS) research program into the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. 
    more » « less
  4. Abstract LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravitational-wave astronomy. As the first anticipated space-based gravitational-wave detector, it will expand our view to the millihertz gravitational-wave sky, where a spectacular variety of interesting new sources abound: from millions of ultra-compact binaries in our Galaxy, to mergers of massive black holes at cosmological distances; from the early inspirals of stellar-mass black holes that will ultimately venture into the ground-based detectors’ view to the death spiral of compact objects into massive black holes, and many sources in between. Central to realising LISA’s discovery potential are waveform models, the theoretical and phenomenological predictions of the pattern of gravitational waves that these sources emit. This White Paper is presented on behalf of the Waveform Working Group for the LISA Consortium. It provides a review of the current state of waveform models for LISA sources, and describes the significant challenges that must yet be overcome. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026